Lattice Spacing of 1D/2D/3D Lattices from Diffraction Peaks


This Javascript calculates the lattice spacings from 1D (lamellar), 2D (square or hexagonal) and 3D cubic lattices from the first 10 reflections of the diffraction pattern. Select the lattice type: 1D-lamellar: L(h/0/0), 2D-square: S(h/k/0), 2D-hexagonal: H(h/k/0) or 3D-cubic: C(h/k/l) and enter the respective q-values of the first (up to) 10 X(√(h2 + k2 + l2)) diffraction peaks. If one or more peak(s) is/are not detectable or not permitted (as for some cubic lattices) enter -1. The lattice spacing will be calculated by a linear fit from q vs √(h2 + k2 + l2) or q vs √(h2 + k2 + h*k), respectively, including the origin q=0 for h=k=l=0. The values of the slope, of the intercept and the resulting lattice spacing will be displayed and the fit will be plotted. If the units of the entered q-values are in 1/A or in 1/nm if the value of the lattice spacing is also in A or in nm, respectively.

Input Results
peak 1: L(1)/S(1)/H(1)/C(1)
peak 2: L(2)/S(√2)/H(√3)/C(√2)
peak 3: L(3)/S(2)/H(2)/C(√3)
peak 4: L(4)/S(√5)/H(√7)/C(2)
peak 5: L(5)/S(√8)/H(3)/C(√5)
peak 6: L(6)/S(3)/H(√12)/C(√6)
peak 7: L(7)/S(√10)/H(√13)/C(√8)
peak 8: L(8)/S(√13)/H(4)/C(3)
peak 9: L(9)/S(4)/H(√19)/C(√10)
peak 10: L(10)/S(√17)/H(√21)/C(√11)
intercept
slope
correlation
lattice spacing
peaks



Author: M.Kriechbaum, TU-Graz (2024), e-mail: manfred.kriechbaum@tugraz.at