Rg-Calculator of Polyhedra

Selected Polyhedra can consist of up to 3 different types of faces (equilateral n-polygonal or rhombic). Enter the type and number of the (different) polygonal faces, their common (equilateral) edge length (a) and either their common out-sphere(ro), mid-sphere(rm) or in-sphere(ri) radius originating in the centroid of the respective polyhedron, extending to the centroid of the faces (ri), of the edges (rm) or to the vertices (ro), respectively. In case of rhombic faces only the in-sphere-radius (ri) can be entered together with the ratio of the rhombic axes (0 < rx/ry < 1). The volume, surface, perimeter (sum of edge lengths), Radius of Gyration of the solid (Rgs), of the faces (Rgf) and of the edges (Rge) will be calculated. Units are arbitrary.

x1(1): y1(1): z1(1):
x2(1): y2(1): z2(1):
x3(1): y3(1): z3(1):

x1(2): y1(2): z1(2):
x2(2): y2(2): z2(2):
x3(2): y3(2): z3(2):

Volume(1): Surface(1): Rg(1) (solid): Rg(1) (faces)

a(1): b(1): c(1):
h(1): ri(1):
rma(1): rmb(1): rmc(1):
ne(1): ne(1): ne(1):
rva(1): rvb(1): rvc(1):
nv(1): nv(1): nv(1):

Volume(2): Surface(2): Rg(2) (solid): Rg(2) (faces)

a(2): b(2): c(2):
h(2): ri(2):
rma(2): rmb(2): rmc(2):
ne(2): ne(2): ne(2):
rva(2): rvb(2): rvc(2):
nv(2): nv(2): nv(2):

Volume: Surface: Perimeter: Rg (solid): Rg (faces) Rg (edges): Rg (vertices):
Volume: Surface: Perimeter: Rg (solid): Rg (faces) Rg (edges): Rg (vertices):

Author: M.Kriechbaum, TU-Graz (2013), e-mail: manfred.kriechbaum@tugraz.at