Radius of Gyration (Rg) of the 13 Catalan Solids


Enter the size of either the inscribed sphere-radius (ri) or the surface area (A) or the volume (V), of the polyhedra and the values for ri, A, V and for the Radius of Gyration of the solid Rg(s) and of the the faces Rg(f) (polyhedron shell) for the 13 Catalan Solids (duals of the Archimedean Solids) will be calculated. These consist of n x polygonal faces which can be 3p trigonal (is, isosceles or sc, scalene), 4p tetragonal (rh, rhombic or dt, deltoidal) or 5p pentagonal (irregular, having 2 different edge lengths). Units are arbitrary.


size: ri A V




Catalan Solid faces V A ri Rg(s) Rg(f)
Triakis Tetrahedron 12 x 3p(is)
Tetrakis Hexahedron 24 x 3p(is)
Triakis Octahedron 24 x 3p(is)
Pentakis Dodecahedron 60 x 3p(is)
Triakis Icosahedron 60 x 3p(is)
Rhombic Dodecahedron 12 x 4p(rh)
Rhombic Triacontahedron 30 x 4p(rh)
Pentagonal Icositetrahedron 24 x 5p
Pentagonal Hexecontahedron 60 x 5p
Deltoidal Icositetrahedron 24 x 4p(dt)
Disdyakis Dodecahedron 48 x 3p(sc)
Deltoidal Hexecontahedron 60 x 4p(dt)
Disdyakis Triacontahedron 120 x 3p(sc)


Author: M.Kriechbaum, TU-Graz (2025), e-mail: manfred.kriechbaum@tugraz.at